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INFLUENCE OF MATERIAL INHOMOGENEITIES ON THE STRESS DISTRIBUTION NEAR A 
THIN ELASTIC INCLUSION* 

A.A. YEVTUSHENKO and V.I. PAUK 

A solution is obtained for the plane problem of elasticity theory for a 
thin-walled elastic inclusion in a matrix whose shear modulus depends 
exponentially on the coordinate that coincides with the axial line of the 
interlayer. 

A solution of the problem for a crack in a plane with shear modulus 
B (!Jf = P (1 + c / Y I), c = const /I/ and with a shear modulus p(z) = t@, @= 
const /2/ has been constructed earlier. 

1. Por?&ation of the pobilm. The elastic equilibrium of an inhomogeneous plane 
containing a thin inhomogeneous elastic inclusion of small thickness 2h (Fig-l) on a segment 
I-a, al of the x axis is considered. The matrix material possesses the variable shear 
modulus p (5) = ue@, B = const and the constant Poisson's ratio Y, and for the inclusion 
material pLo(s) = pc,eF*F, pO= const and vO, respectively. The mechanical contact between the 
inclusion and the matrix inhomogeneity is characterized by total adhesion. The composite 
body is under the conditions of the plane problem subjected to a uniform tensile load at 
infinity. 

When taking account of the small thickness of the inclusion and the symmetry of the 
problem, theinteraction of a thin elastic inclusion with the surrounding medium can be 
described by the system of differential relationships f3, 4/ 

2P., (4 v ix, -to) = h Ic,,ay (4 4-O) 

N(2)=N(-u)-+ 5 (J,y 0, + 0) at, 

Cl0 = (1 + x$4, czo = (3 - 

x0 = (3 -v&/(1 fv,,) for the generalized plane state of stress ~0 = 3-4~~ for the plane 

strain, and N(--a) is the normal force on the endface ~=-a of the inclusion. 

2. EIethod of so&&ion. By virtue of the linearity, the solution of the problem under 
investigation can be represented in the form 

(a, u) = (CO, u") + @J*, a*) (2.1) 

where o" = (o,", CvO, u*r") is the stress, u" = (u", u") is the displacement due to a given 
external load in an inhomogeneous plane without an inclusion (the fundamental problem) and 
u* = (u,*, ufl*, a,,*), u* = (a*, I?*) are the stress and displacement for the perturbed part of 
the problem. Assuming the quantities o",uO to be known, we can determine the values u*,u*. 

Let U (2, y) be the stress function for the perturbed part of the problem. Then 

cTx* = u,,,, a"* = u.,,, o:, = - UJ, (2.2) 

Substituting (2.2) into the strain compatibility equation taking Hooke's law into account 
we obtain the differential equation 

D"U - 2~CZU,,-t B" (U,, - CU.& = 0 

C = E.&ICI' C1 = (1 + x)/4, c2 = (3 - x)/4 
(2.3) 

x = (3 -v)/(l + v) for the generalized plane state of stress, x=3-4v for plane strain, 
and 02 is the Laplace operator. We will seek the function u (-zI Y) in the form of the 
Fourier integral 
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t t 
P 

t U (,x, y) = -.& 1 a (a, y) rim da, --~<X<9 Y>O (2.4) 
. . 

D(a, y) = f U(x, y)eixadx, - =<a<=, Y>O 
-ce 

We then obtain from (2.3) 

-a $$- + (Z$a- 2aZ- f$P)-$ $(a* - 2ifiCG - fPCc")C = 0 (2.5) 

I The general solution of (2.5) that decreases at infinity 
P has the form 

Fig.1 lJ(a,Y)=Al(a)e-m*~ + A,(a)e-ma, y>O 
m, = ((-+I -t ys)iZ)"*, m, = ((-yr - y&?)'/s 

(2.6) 

y1 = 2ioa - 2a"-- cpe, y, = @"c" - 4i@a +- 4pca”yfa 

(A,(a), A,(a) are complex functions). We find 

1 - a,* (G Y) = y SE Aj (a) m .Be-mJue-ixa 
2 da 

--o) 

OD 

a,*(~, y)= - & s c~~~A~(a)e-~J'-'e-~~~da 
-c0 
m 

&(X,Y)=:+- o . s 
Aj (a) mje-mJue-ira du 

-cG 

(2.7) 

2p (x) vtx (I, yf = - & 5 (f3 + ia) z -$- Aj (a) e-mJYewim da 
-m 

I 1 j = c,aa + C$TLjP, 1,j = c,& + clmja, j = 2,2 

from relations (2.21, (2.4), (2.6) and Hooke's law. 
Here and everywhere henceforth, unless otherwise stated, the summation is over j from 

j=1 to I =2. 
Let us use the notation 

oly* (I, +O) = jr (5) 2cL (x) vl; (5, i-0) = f2 (5), - 00 < 5< m (2.8) 

where fJ (z) = 0, I x 1 > a. Taking (2.7) into account, we obtain from relationships (2.8) 

Substituting the functions AI (a), A, (a) into (2.7) and passing to the limit Y+ +0 
we obtain 

ulI*(5, -t-O) =I il[& 1 J$fj(t)hj(X, yJ)dt] (2.10) 
-a 
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Here 

As follows from (2.61, as [a l-+00 we have mj-+ la 1, and relationships (2.11) 
result in the equalities 

Taking account of the value of the integral 

1 ‘?a - s _...!L e-la1 U&a (f-X)& =: 
t-x 

21 
..__ Ia' @-- s)2+ y2 

we obtain from relationships (2-l), (2.101, (2.12) 

Uy(G + 0) = cr,*(rr) t_ f 4 ~fj(t)[&+k~j(s,t)]dt 
--a 

(2.11) 

(2.12) 

(2.13) 

Substituting (2.13) into the conditions for interaction between a thin-walled elastic 
inclusion and an inhomogeneous matrix (1.1) and changing to dimensionless quantities, we 
obtain a system of two singular integral equations 

Here 
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The required functions 'pr(z), qz(r) satisfy the additional conditons 

i cpj(T)dT=Bj, j=l,Z 

J3, = A, &a) - N(a)], B, = V (a) - V (-a) 

(2.15) 

A priori formulas for calculating the axial force N(w) and the relative vertical 

displacement V(w) on the endfaces w=fa of the inclusion are presented in /4/. 
The system of singular integral Eqs.(2.14) and (2.15) describes the elastic equilibrium 

of a plane with an inclusion of arbitrary stiffness: from absolutely compliant (crack) to 
absolutely rigid. In the case when the mechanical parameters of the matrix and inclusion 
are equal, it follows from the system of integral Eqs.(2.14) and (2.15) that cpj(~) = 0, (i = 1, 

2) and therefore, the absence of perturbations induced by the inclusion. For k = 0 we 

have cpl (T) = 0 and the integral equation 

1 l c [ 7. ‘pz w -&+ kn (E, ~.)ld~ = - CQ”(@, - I < 5 < I 

for a crack in an inhomogeneous plate, obtained earlier /2/. If k+cv, then Q (7) = 0 
follows from (2.14) and 

+ { n(T) [a + kzl (f, T)] dT = - 2~ (4 uPx W - I< 5 < 1 
-1 

is the integral equation for an absolutely rigid inclusion in an inhomogeneous plane. Setting 

B = B0 = 0, we obtain the solution for a thin-walled elastic inclusion in a homogeneous 
matrix /5/. 

3. Nmerical analysis. We will represent the solution of the system of integral Eqs. 
(2.14) and (2.15) in the form 

Tj(T)=Gj(T)/l/l, --l<t< 1, j= 1, 2 (3.1) 

(GJ (7) is a bounded measurable function). Substitution of the representation (3.1) into the 
integral Eqs.(2.14) and (2.15) and utilization of the analogueof the Lobatto-Jacobi quadrature 
formula for singular integrals /6/ lead to a system of linear algebraic equations 

Here 

The system of linear algebraic Eqs.(3.2) was solved numerically in the case of equality 
of the matrix and inclusion inhomogeneity parameters 3= PO and P# K,. The solution of the 
fundamental problem has the form 
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o"=p, Y 2p (z)U;, =--1p 

and Bj= 0 (j= i,Z) in (2.15). The state of stress in the neighbourhood of the vertex of a 
thin elastic inclusion is characterized by the stress intensity factor 

kr (3= lirn 1/2(z- w)D~(z,w), w=+a Z-W _ (3.3) 

Substituting the value crl/(~,+O) from relation (2.13) into (3.31, we obtain 

k’ (f a) = p v/a[kl’ (f: a) + k,’ (f 41. kjl (+ a) = T hIjGj (t_ I), i = 1, 2 (3.4) 
The vertical displacement of the edges of an inclusion was additionally investigated 

for compliant inclusions (k<1) , while the distribution of shear stresses on the inclusion 
axis was studied for stiffer inclusions as compared with the matrix (k> 1). The following 
interpolation formula was used here /ti/ 

11-3 

Gj(Q= I+= 2 Gj(l) + 

rn=O 

n-1 
1+z I-T 

Gj(rr)-y Gj(l)- -+Gj(-1) , j=l,Z 1 
(3.5) 

(Urn (.) are Chebyshev polynomials of the second kind). Then 
Try (5, + 0) = (a2 -z~)-~~G~(z/u) 

and integrating the second of relationships (2.8) with respect to x while taking account of 
(3.1), we have 

Substituting the value of G, (t) from (3.5) into relation (3.6) and evaluating the 
integral, we find 

2p(z) + = -$- (arcsinE + + - VI- gz)G,(l)+ 

Computations were performed for the case of a generalized plane state of stress for 
h,=0.i,Y=Vg=0.3. It is required to take n= 5 for the most unfavourable parameters of 
the problem to achieve a 1% relative accuracy. 

The dependence 
to be almost linear 

of the stres intensity factors on the inhomogeneity parameter p turns out 

(3.7) 

K,+ K,- 

1093 -0 
896 -3 
345 -Ii 
i 
0 % 
0 100 

(3.6) 

Table 1 

898 

Et 
1 
0 
0 

for k = 1O-s (j = 2) and k = 10” (j = 1) 

Klf=lli+iOp, Ka*=980+100~ 
(Kj* =k:(k a)p-'a-"..103, ;= 1,2) 
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Table 2 

k =O,l X-l0 

6 
K,+ I Kt+ K,- I Kt- I Rx+ I K,- 

t2 1:; 335 s::: 335 329 69 11 z”7 

0:4 -13 E: --11 323 0.6 -14 --1o 317 z :x 
0.8 --15 E -10 310 61 
1 -16 350 --1O 304 

;: 
59 

The dependence of these quantities on the relative stiffness k of the inclusion is given 
in Table 1 for 8 = 0.5 : Values of K#fi=1:2) as a function of the inhom~eneity par- 
ameter j3 are presented in Table 2 for k=0.1 and k= 10 (in the latter case F&J:= 1 for 
all p). 

Fig.2 

The distribution of the shear stresses (Z- ti)"%Xy(r/a)~iO over the axial line --=<~<a, 
x=0 of the inclusion is shown in Fig.2 for k = 103 (curves 1) and the normal displacements 
2p (a+ v (Z)l(QP) found by means of (3.7) for a compliant inclusion for k= 10-s (c’urves 2) for 
@=O {the solid line) and 8 *OS (the dashed line). 
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